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Abstract

Background: The topical inflammatory soup can model the inflammation of the dura mater causing
hypersensitivity and activation of the trigeminal system, a phenomenon present in migraineurs. Calcitonin gene-
related peptide, transient receptor potential vanilloid-1 receptor, and neuronal nitric oxide synthase are important in
the sensitization process there.

5-HT4s/1p receptor agonists, triptans are used as a treatment of migraine. Kynurenic acid an NMDA antagonist can
act on structures involved in trigeminal activation.

Aim: We investigated the effect of inflammatory soup induced dural inflammation on the calcitonin gene-related
peptide, transient receptor potential vanilloid-1 receptor, and neuronal nitric oxide synthase levels in the caudal
trigeminal nucleus. We also tested whether pretreatment with a well-known antimigraine drug, such as sumatriptan
and kynurenic acid, a compound with a different mechanism of action, can affect these changes and if their
modulatory effects are comparable.

Material and methods: After subcutaneous sumatriptan or intraperitoneal kynurenic acid the dura mater of adult
male Sprague-Dawley rats (n=72) was treated with inflammatory soup or its vehicle (synthetic interstitial fluid). Two
and a half or four hours later perfusion was performed and the caudal trigeminal nucleus was removed for
immunohistochemistry.
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Results and conclusion: Inflammatory soup increased calcitonin gene-related peptide, transient receptor potential
vanilloid-1 receptor, and neuronal nitric oxide synthase in the caudal trigeminal nucleus compared to placebo,
which was attenuated by sumatriptan and kynurenic acid. This suggests the involvement of 5-HT,g,;p and NMDA
receptors in neurogenic inflammation development of the dura and thus in migraine attacks.
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Article highlights or key findings
Inflammatory soup can cause an increase in the CGRP,
TRPV1, and nNOS levels in the TNC.

Sumatriptan was able to mitigate the effect of inflam-
matory soup.

Kynurenic acid could modulate the effect of inflamma-
tory soup.

Introduction

Migraine is a common condition affecting up to 15% of
the world’s population [1]. The pathomechanism of this
disorder is not fully understood, but the sterile neuro-
genic inflammation of the dura mater and the activation
and sensitization of the trigeminal system (TS) play a
crucial role in the attack [2].

In animal models, stimulation of trigeminal nerves
causes a release of neuropeptides, resulting in meningeal
blood vessel dilation, plasma extravasation, platelet
activation, and mast cell degranulation characteristic of
neurogenic inflammation [3]. Calcitonin gene-related
peptide (CGRP) is a multifunctional regulatory neuro-
peptide [4] and a key player in migraine: Serum concen-
trations of CGRP are elevated during the attack [5]
whereas intravenous infusion of CGRP can induce a
migraine-like headache in migraineurs [6]. In a rat
model of migraine, electrical stimulation of the trigemi-
nal ganglion was able to increase blood flow on the same
side of the facial skin which was reduced by intravenous
administration of the CGRP antagonist, CGRP 8-37 [7].
Transcranial electrical stimulation in rats was able to
cause CGRP release and vasodilation, which was
prevented by olcegepant, a CGRP receptor blocker [8].
These results are in line with the clinical data showing
that CGRP antagonists are effective in the acute treat-
ment of this disease [9-11]. On the other hand, there
are other pathways involved in neurogenic inflammation
which are not directly related to CGRP e.g. the appear-
ance of cortical spreading depression might also contrib-
ute to this phenomenon [12].

Transient receptor potential vanilloid-1 receptor
(TRPV1), a nonselective cation channel, a molecular
component of pain detection and modulation [13], is
selectively expressed by small- to medium-diameter
neurons within the dorsal root ganglion (DRG) and
trigeminal ganglia (TG), co-localized with CGRP in

the latter [14]. TRPV1 activation leads to the release
of neuropeptides, such as substance P and CGRP.
These neuropeptides cause vasodilation and initiate
neurogenic inflammation within the meninges under
experimental conditions [15].

The synthesis of nitric oxide (NO) is catalyzed by
neuronal nitric oxide synthase (nNOS), which can be
found in the superficial layers of the dorsal horn of the
spinal cord underlining its importance in the trigeminal
pain processing [16]. Furthermore, its presence is con-
firmed in dural mast cells, trigeminal nerve endings, and
Gasserian ganglion cells [17]. Systemic administration of
nitroglycerin (NTG), a nitric oxide donor can induce an
immediate headache and in migraine patients, this is
followed by a typical migraine attack without aura [18].
The immediate headache can be explained by the vaso-
dilatory effect of NO, which activates the dural nocicep-
tors, while the delayed headache might be mainly due to
an effect of NO on central nociceptors, causing a long-
lasting endogenous synthesis of NO by enhancing nNOS
resulting in central sensitization process [19].

Triptans are used to relieve migraine attacks, being an
agonist on 5-hydroxytryptamine receptors (5-HTp/1p),
they can cause the constriction of dilated cranial arteries
and the inhibition of CGRP release [20]. They block the
depolarization of the trigeminal nerves and inhibit the
neurotransmission at the level of interneurons of TNC
[21]. In an animal model of migraine, after creating
neurogenic inflammation in the dura mater, triptans
were able to reduce the plasma protein extravasation,
probably by inhibiting nociceptor activation and pre-
venting neuropeptide release [5]. The increase of jugular
vein CGRP concentration after the stimulation of the
TG can be reduced by sumatriptan [5, 22]. In the rat
model of trigeminal neuropathic pain, triptans can
selectively inhibit nociceptive [23] and neuropathic pain
behavior [24] and evoked activity in trigeminal dorsal
horn neurons [21] in response to noxious stimulation of
the trigeminal nerve area. In the TG, 5-HT,p,1p recep-
tors and glutamate were co-localized in several neurons
[25], thus triptans may modulate glutamate release from
trigeminal neurons through the 5-HT/;p receptors and
possibly reduce pain [24].

Kynurenic acid (KYNA) is a neuroactive product of
the kynurenine pathway of tryptophan metabolism,
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which can exert its effect through N-methyl-D-aspartate
(NMDA), a-amino-3-hydroxy-5-methyl-4-isoxazole pro-
pionic acid (AMPA), kainate receptors, and G-protein
coupled receptor 35 (GPR35), and these receptors have a
relevant role in pain processing and neuroinflammation
[26]. A previous study suggests that KYNA has an anti-
inflammatory effect on the TS [27]. In rats, KYNA had
an analgesic effect in tail-flick test [28]. In an in vivo
model of acetic acid-induced inflammatory pain, L-
kynurenine, which is a precursor of KYNA, caused rise
in the KYNA levels in the plasma and the central ner-
vous system (CNS), thereby, was able to elicit anti-
nociceptive effect [29].

Based on the results of clinical trials and animal exper-
iments, trigeminal activation and sensitization occur
during the migraine attack. Local administration of in-
flammatory soup (IS) on the dura mimics this process
[30], which might be characterized by the alteration of
selected molecular markers. On the other hand, since
sumatriptan is effective in the acute treatment it may
prevent these alterations and we wanted to compare its
possible modulatory effects with a compound with a dif-
ferent pharmacological mechanism of action.

Thus, in our present study, we investigated the effect
of IS induced dural inflammation on markers of the
sensitization process in the trigemino-cervical complex,
namely: CGRP, TRPV1, and nNOS. We also tested
whether pretreatment with sumatriptan or KYNA has an
effect on the IS induced changes.

Materials and methods

Animals

The procedures used in our study were approved by the
Committee of the Animal Research of University of Sze-
ged (I-74-49/2017) and the Scientific Ethics Committee
for Animal Research of the Protection of Animals Advis-
ory Board (XI./1098/2018) and followed the guidelines
the Use of Animals in Research of the International As-
sociation for the Study of Pain and the directive of the
European Parliament (2010/63/EU).

Seventy-two adult male Sprague-Dawley rats weighing
350-400g were used. The animals were raised and
maintained under standard laboratory conditions with
tap water and regular rat chow available ad libitum on a
12 h dark-12 h light cycle.

Drug administration

The animals were divided into two groups of 6 rats
(n =6 per group for 2.5h and n =6 per group for 4 h).
The animals were deeply anesthetized with an intra-
peritoneal injection of 4% chloral hydrate (0.4 g/kg
body weight, Sigma-Aldrich). The head of the animal
was fixed in a stereotaxic frame and lidocaine (10 mg/
ml, Egis) infiltration on the skull was used before the
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interventions. A handheld drill was used to make a
window on the skull. The hole was made posterolater-
ally (5mm, 3 mm) to the bregma, on the right side
without penetrating the dura mater [31].

The animals in the first group called the placebo
group, received synthetic interstitial fluid, (SIF, 135
mM NaCl, 5mM KCl, 1mM MgCl,, 5mM CaCl,,
10 mM glucose in 10 mM HEPES buffer, pH7.3). In
the second group, we applied inflammatory soup (IS,
1mM bradykinin, 1 mM serotonin, 1 mM histamine,
0.1 mM prostaglandin in 10 mM HEPES buffer, pH
5.0) on the dural surface. In the third and fourth
groups, the animals received subcutaneous sumatrip-
tan (0.6 mg/kg) 10 min before the SIF or IS treat-
ment, while in the fifth and sixth groups received
intraperitoneal KYNA (189.17 mg/kg) pretreatment
one hour before treatment. Both pretreatment proto-
cols were based on the pharmacological properties of
the substances. Sumatriptan has a short half-life, its
receptor binding is reversible and the onset of action
is 10-15min after administration. The half-life time
of KYNA is about an hour. The dosage we used for
both molecules was chosen based on previous re-
ports [32-34]. Two and a half hours or four hours
after the SIF or IS administration, the trigemino-
cervical complex was processed for immunohisto-
chemistry. Two survival times were used to examine
changes over time.

Immunohistochemistry

Two and a half hours or four hours after the SIF or IS
administration, the rats were perfused transcardially with
50 ml phosphate-buffered saline (PBS, 0.1 M, pH?7.4),
followed by 200 ml 4% paraformaldehyde in phosphate
buffer under chloral hydrate anesthesia, and the
trigemino-cervical complex was removed and postfixed
overnight for immunohistochemistry in the same fixa-
tive. After cryoprotection, 30 um cryostat sections were
cut and serially collected in wells containing cold PBS.
The free-floating sections were rinsed in PBS and
immersed in 0.3% H,O, in methanol (CGRP staining) or
PBS (nNOS and TRPV1 staining) for 30 min. After sev-
eral rinses in PBS containing 1% Triton X-100, sections
were kept overnight at room temperature in anti- CGRP
antibody (Sigma, C8198) at a dilution of 1:20000, or
TRPV1 antibody (Santa Cruz, s.c.28759) at a dilution of
1:1000, or for two nights at 4 °C in anti-nNOS antibody
(EuroProxima, 2263B220-1) at a dilution of 1:5000. The
immunohistochemical reaction was visualized by the
Vectastain Avidin-Biotin kit of Vector Laboratories
(PK6101), and nickel ammonium sulfate-intensified 3,3"-
diaminobenzidine. Control experiments included the
omission of the primary antisera.
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Data evaluation

All evaluations were performed by an observer blind to
the experimental groups. The photomicrographs of the
stained sections of trigemino-cervical complex were
taken using a Zeiss Axiolmager microscope supplied
with an AxioCam MRc Rev. 3 camera (Carl Zeiss Mi-
croscopy). The area covered by TRPV1-immunoreactive
and CGRP-immunoreactive fibers was determined by
Image Pro Plus 6.2° image analysis software (Media Cy-
bernetics). After image acquisition, the laminae I-II in
the dorsal horn were defined manually as areas of inter-
est, and a threshold gray level was validated with the
image analysis software. The program calculated the area
innervated by the immunoreactive fibers as the number
of pixels with densities above the threshold; the data
were expressed as area fractions (%) of the correspond-
ing immunolabelled structures. We measured the cov-
ered area by the CGRP and TRPV1 immunoreactive
fibers and counted the nNOS immunoreactive cells in
the area of the dorsal horn innervated by the ophthalmic
nerve (V/1 area).

Statistical analysis

The Shapiro-Wilk test was used to determine the distri-
bution of data. As our data followed a normal distribu-
tion in each case, the differences among the groups and
sides were examined with a mixed ANOVA model. The
pairwise comparisons were performed by paired and in-
dependent samples t-tests with Sidak corrections. All
statistical analyses were performed using SPSS version
24.0 (IBM Corporation). Values p < 0.05 were considered
statistically significant. Our data are reported as means+
SEM for all parameters and groups.

Results

Inflammatory soup and CGRP

In the dorsal horn, CGRP immunoreactive (IR) axon
fibers were distributed in the laminae I and II. IS treat-
ment was able to increase the amount of the area cov-
ered by fibers showing CGRP positivity in both time
points (Figs. 1, 2, and 3). Sumatriptan and KYNA pre-
treatments were able to attenuate this effect (Fig. 3).
There was no relevant difference between the two time
points in the area covered by fibers showing CGRP
positivity.

Inflammatory soup and TRPV1

After 2.5h there was no significant difference between
the IS treated and placebo group (data not shown), but
after 4h we observed a significant increase in the
amount of the TRPV1 IR fibers in the IS-treated group,
compared to the placebo. Sumatriptan and KYNA pre-
treatments were able to mitigate the effect of the IS
treatment (Fig. 4., Fig. 6.).
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Inflammatory soup and nNOS

A significant increase of nNOS was observed only after
4h in the IS treated group compared to the placebo
group in the V/1 area. Sumatriptan and KYNA pretreat-
ments were able to modulate the effect of IS administra-
tion (Fig. 5., Fig. 6.).

Discussion

The activation and sensitization of the TS are essential
hallmarks of migraine pathomechanism. In our rat
model, the topically applied IS activated the trigemino-
vascular system [35, 36], and raised the levels of all the
three selected markers in the TNC area. Although other
pathways, neurotransmitters (e.g. glutamate, 5HT, pros-
taglandins) and mechanisms might be involved, the
release of neuropeptides from the activated peripheral
nociceptive terminals may contribute to the develop-
ment of neurogenic inflammation in this case [3]. These
peptides lead to a cascade of inflammatory tissue
responses including vasodilation, plasma protein
extravasation, and degranulation of mast cells [3], at
least in rats.

In our study, as early as two and a half hours after
administration, the IS was able to increase the area cov-
ered by fibers showing CGRP positivity in the dorsal
horn of the cervical spinal cord. The cranial dura mater
is densely innervated by CGRP IR fibers [37] thus the in-
creased CGRP level might represent enhanced activation
of the primary afferents, which may also be associated
with increased CGRP release from the terminals [9] pos-
sibly causing a globally higher turnover e.g. intensive
synthesis reflected by higher CGRP expression at the ter-
minals [38]. It has been also shown, that intracisternal IS
can raise the CGRP concentration in the jugular vein
which also reflects release from the nerve endings [39].
This phenomenon might contribute to the activation
and sensitization of primary and secondary nocicep-
tors in the TS via the release of numerous pro-
inflammatory agents (e.g. cytokines), which can stimu-
late the nociceptors [40].

In our experiment, IS was able to significantly increase
the amount of TRPV1 IR fibers in the dorsal horn after
4 h. Amaya and colleagues described that TRPV1 expres-
sion is showing up-regulation in DRG neurons after
local inflammation in rats [41]. TRPV1 activation by
high temperature or capsaicin allows the entry of Ca**,
leading to the release of neuropeptides [42, 43], which
are able to influence the development of edema and
neurogenic inflammation [44, 45]. In another study, after
CFA-induced inflammation, increased TRPV1 expres-
sion was observed in the digital nerves of the inflamed
hindpaw [46]. Pharmacologic studies have also shown
that TRPV1 is an essential component of the cellular
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Fig. 1 CGRP immunoreactivity 2.5 h after IS treatment Representative photomicrographs of the CGRP expression in the trigemino-cervical
segments after 25 h. a - SIF, b - IS, ¢ = SUMASIF, d — SUMAIS, e — KYNSIF, f — KYNIS. In the IS group, the CGRP staining was stronger than in the
placebo group. Sumatriptan and kynurenic acid were able to attenuate this effect. SIF: synthetic interstitial fluid, IS: inflammatory soup, SUMASIF:
sumatriptan + synthetic interstitial fluid, SUMAIS: sumatriptan + inflammatory soup, KYNSIF: kynurenic acid + synthetic interstitial fluid, KYNIS:

kynurenic acid + inflammatory soup. Scale bars: 200 yum, 50 um

signaling mechanisms through which injury produces
thermal hyperalgesia and pain hypersensitivity [47].
TRPV1 is present in the human TG [48] and trigemi-
nal afferents, which innervate the dura mater [49], and
these nerve fibers also contain CGRP [50]. TRPV1 ex-
pression is also upregulated in painful inflammatory
conditions in humans [51]. In chronic migraine patients,

intranasal capsaicin was able to mitigate the migraine
pain [52] and TRPV1 agonists might be effective most
likely due to desensitization in the acute treatment of
migraine [53] as well. Taken together these data point to
the fact, that TRPV1 is involved in the trigeminovascular
activation and sensitization both in animal models and
humans.
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Fig. 2 CGRP immunoreactivity 4 h after IS treatment Representative photomicrographs of the CGRP expression in the trigemino-cervical
segments after 4h. a - SIF, b — IS, ¢ = SUMASIF, d — SUMAIS, e — KYNSIF, f — KYNIS. In the IS group, the CGRP staining was stronger than in the
placebo group. Sumatriptan and kynurenic acid were able to attenuate this effect. SIF: synthetic interstitial fluid, IS: inflammatory soup, SUMASIF:
sumatriptan + synthetic interstitial fluid, SUMAIS: sumatriptan + inflammatory soup, KYNSIF: kynurenic acid + synthetic interstitial fluid, KYNIS:

In our study, IS significantly enhanced the number of
nNOS IR cells in the dorsal horn after 4h due to the
activation of primary trigeminal nociceptors conveyed to
the second-order neurons [54]. NO donors cause an in-
crease and release of CGRP at the TG and TNC, and
NO donors lead to a delayed enhancement of nNOS in
the latter [55]. Moreover, bradykinin and histamine

trigger NO release from vascular endothelial cells
in vitro, suggesting a strong interaction between NO and
inflammation [56]. An increase in NO production may
contribute to an amplifying process in the meninges,
which involves the release of CGRP and possibly prosta-
glandins and other mediators leading to rapid vasodilata-
tion [19, 57]. The latter can lead to the activation of
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Fig. 3 Statistical analysis of CGRP staining 2.5 and 4 h after IS treatment The quantitative analysis shows that in the IS group the area covered by
fibers showing CGRP positivity is significantly higher than in the control group in both timepoints. a 2.5 h after IS treatment, sumatriptan was able
to attenuate this effect in the V/1 area. b Similar to sumatriptan kynurenic acid weakened the effect of IS in the V/1 area. ¢ 4 h after IS treatment,
sumatriptan was able to mitigate this effect in the and V/1 area. d Kynurenic acid decreased the effect of IS in the V/1 area. *p < 0.05; **p < 0.01,
***p <0.001 * means SIF-IS differences, + means IS-SUMA/KYNA. SIF: synthetic interstitial fluid, IS: inflammatory soup, SUMASIF: sumatriptan +
synthetic interstitial fluid, SUMAIS: sumatriptan + inflammatory soup, KYNSIF: kynurenic acid + synthetic interstitial fluid, KYNIS: kynurenic acid +

inflammatory soup

primary afferent neurons and CGRP release, activating satel-
lite glial cells that release NO, which can induce nNOS [58].
In this context nNOS is can be considered as a significant
marker of the sensitization process of the TS in animals.

Interestingly, the increase of TRPV1 and nNOS levels
are observed later compared to the changes of CGRP
reflecting, that the changes of the latter are more likely
related to the activation of the primary trigeminal noci-
ceptors whereas TRPV1 and nNOS, which are more
likely involved in the sensitization, show a delayed
pattern of enhancement.

In our study, sumatriptan was able to modulate the in-
crease of CGRP levels and the TRPV1 activity probably
through 5-HT;p/1p receptors. This is in line with previ-
ous results showing, that CGRP and TRPV1 are co-
localized with 5-HT;p,;p receptors in trigeminal neurons
[59] and sumatriptan presynaptically inhibits the release
of nociceptive neuropeptides (e.g. CGRP) from primary
afferents [60] and most of the effects of TRPV1 recep-
tors are mediated through CGRP, which is released after
TRPV1 activation [61] so 5-HT might have a role in
modulation of TRPV1 function too. This is paralleled
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KYNIS: kynurenic acid + inflammatory soup. Scale bars: 200 ym, 50 um

Fig. 4 TRPV1 immunoreactivity 4 h after IS treatment Representative photomicrographs of the TRPV1 expression in the trigemino-cervical
segments after 4h. a — SIF, b — IS, ¢ — SUMASIF, d — SUMAIS, e — KYNSIF, f — KYNIS. In the IS group, the area covered by TRPV1 was higher than
in the placebo group. Sumatriptan and kynurenic acid were able to attenuate this effect. SIF: synthetic interstitial fluid, IS: inflammatory soup,
SUMASIF: sumatriptan + synthetic interstitial fluid, SUMAIS: sumatriptan + inflammatory soup, KYNSIF: kynurenic acid + synthetic interstitial fluid,

with the observations, where sumatriptan mitigated the
TRPV1 activity after the intracisternal application of IS
[62].

In our experiment, sumatriptan also prevented the in-
crease in the number of nNOS IR cells in the rat TNC after
4h suggesting an important involvement of 5-HTip/p
receptors in the sensitization process in the TS. On the

periphery, sumatriptan inhibits presynaptically the release
of vasoactive peptides from primary afferents and impairs
the development of neurogenic inflammation [25].
Sumatriptan prevented the increased NOS produc-
tion in the brainstem after intracisternal carrageenan
injection [63]. In humans, NTG-induced headache
has been reported to respond to sumatriptan as well
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Fig. 5 nNOS immunoreactivity 4 h after IS treatment Representative photomicrographs of the nNOS expression in the trigemino-cervical
segments after 4h. a — SIF, b — IS, ¢ = SUMASIF, d — SUMAIS, e — KYNSIF, f — KYNIS. In the IS group, the number of nNOS-IR cells was increased
compared to the SIF- treated group. Sumatriptan and kynurenic acid were able to mitigate this effect. SIF: synthetic interstitial fluid, IS:
inflammatory soup, SUMASIF: sumatriptan + synthetic interstitial fluid, SUMAIS: sumatriptan + inflammatory soup, KYNSIF: kynurenic acid +
synthetic interstitial fluid, KYNIS: kynurenic acid + inflammatory soup. Scale bars: 200 um, 50 pm.

[64]. Taken together, these results suggest that 5-HTg/1p
agonism can inhibit IS-induced activation and
sensitization present in dural inflammatory process.
Compared to sumatriptan, KYNA had a similar effect
on the examined markers in our experimental setting
and this phenomenon may be mediated through several
different receptors. First KYNA is an endogenous, non-

selective ionotropic glutamate receptor antagonist, which
acts on the non-competitive glycine site of NMDA
receptors and it is also a GPR35 ligand [26]. Currently,
the antagonist effect of KYNA on the o7-nicotinic
acetylcholine receptor (nAChR) is contested [65].

Three hours after the local IS treatment of the dura,
higher glutamate levels can be detected in the TNC [57].
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Fig. 6 Statistical analysis of TRPV1 and nNOS staining 4 h after IS treatment The quantitative analysis shows that in the IS group the area covered
by TRPV1 IR fibers and the number of nNOS IR cells is significantly higher than in the control group after 4 h. a Sumatriptan was able to
attenuate the increase in TRPV1 IR fibers in the V/1 area. b Similar to sumatriptan kynurenic acid also mitigated the effect of IS in the V/1 area. ¢
In the V/1 area sumatriptan was able to abolish the increase in nNOS IR cells. d Kynurenic acid also weakened the effect of IS in the V/1 area

*p < 0.05; **p < 0.01, ***p < 0.001. * means SIF-IS differences, + means IS-SUMA/KYNA differences. SIF: synthetic interstitial fluid, IS: inflammatory
soup, SUMASIF: sumatriptan + synthetic interstitial fluid, SUMAIS: sumatriptan + inflammatory soup, KYNSIF: kynurenic acid + synthetic interstitial
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In addition to the NMDA receptors, both AMPA, kai-
nate, and metabotropic receptors are found in the TNC
[66] and it has been shown, that the antagonists of non-
NMDA glutamate receptors also can inhibit the activa-
tion of secondary nociceptive neurons [67]. AMPA re-
ceptors can modulate c-fos expression and possibly the
neurotransmission in the TS [68] and in a peripheral
pain model, activation of the kainate receptors resulted
in the appearance of mechanical, thermal hyperalgesia,
and allodynia [67]. In the TNC, CGRP can stimulate

glutamate expression and that can be inhibited by 5-
HT;p/1p receptor agonists [69]. Hence, the relationship
between the two systems can be assumed.

In humans, painful stimulation leads to an increase in
glutamate concentration in the trigemino-cervical complex
[70] and glutamate levels are elevated both ictally and inter-
ictally in migraine sufferers [71]. Based on observations in
animals and humans, we believe that among others the
modulation of glutamatergic neurotransmission is the key
event here mitigating CGRP changes.
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TRPV1 and NMDAR are co-expressed in the TG [72].
In a mechanical hyperalgesia test of rats, it was found,
that NMDAR and TRPV1 functionally interact probably
via the calcium/calmodulin-dependent protein kinase
type II (CaMKII) and protein kinase C signaling cascades
in rat trigeminal sensory neurons and this interaction
has a role in the development of mechanical hyperalgesia
[72]. GPR35 and TRPV1 co-localize in small- and
medium diameter DRG neurons. GPR35 may regulate
TRPV1 channel activity by modulating cyclic adenosine
monophosphate /protein kinase A pathway [73].

KYNA pretreatment also modulated the IS induced
nNOS expression in our animal model. This effect might
be related to the anti-glutamatergic effect of KYNA,
mainly on the NMDA receptors, which activation is as-
sociated with NO production in the spinal trigeminal
nucleus [74]. Furthermore, Cosi and colleagues de-
scribed that elevation of KYNA concentration in the
brain could decrease the extracellular glutamate levels in
the nervous tissue and reduce inflammatory pain [75].
Another possible explanation for the peripheral effects
of KYNA is that it binds to GPR35, which receptor is
present in the DRG [76] and KYNA can inhibit ad-
enylate cyclase activity there via G-protein-dependent
mechanisms [73] which might interact with nNOS
[77, 78]. It has been also reported that abnormalities
of the kynurenine pathway are associated with head-
ache disorders e.g. there is evidence that serum
kynurenic acid levels decrease during cluster headache
and chronic migraine [79-81].

In the present study, sumatriptan and KYNA were
similarly effective mitigating the effects of the IS model.
They were likely to exert their effects through different
receptors/pathways involved in the activation of the tri-
geminovascular system pointing to different sites of pos-
sible pharmacological modulation during this process.

Conclusion

In our experiment, IS was able to cause sterile neurogenic
inflammation in the dura mater. As a consequence of in-
flammation, changes occur in CGRP, TRPV1, and nNOS
levels, which indicates activation and sensitization. Suma-
triptan probably acted through the 5-HT;g,1p receptors to
reduce the expression of the activation and sensitization
markers in the TNC by direct (presynaptic) and indirect
(lowered dural inflammation) effects on the periphery. In
our present study, KYNA possibly acted primarily on per-
ipheral trigeminal nociceptors and secondary sensory neu-
rons and was able to mitigate the activation of these
markers in the TNC predominantly through the inhibition
of the glutamate system and thereby blocking the
sensitization processes, which is important in primary
headaches. These findings can help us to understand the
pathomechanism processes in migraine.
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